A FIRST MOLECULAR PHYLOGENETIC ANALYSIS OF PASSIFLORA (PASSIFLORACEAE)

VALÉRIA C. MUSCHNER,2 ALINE P. LORENZ,2 ARMANDO C. CERVI,3 SANDRO L. BONATTO,4 TATIANA T. SOUZA-CHIES,5 FRANCISCO M. SALZANO,2 AND LORETA B. FREITAS2,6

1Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil; 2Departamento de Botânica, Universidade Federal do Paraná, Caixa Postal 19031, 81531-970 Curitiba, PR, Brazil; 3Centro de Biologia Genética e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610-001 Porto Alegre, RS, Brazil; and 4Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43433, 90509-900 Porto Alegre, RS, Brazil

Passiflora, a genus with more than 400 species, exhibits a high diversity of floral and vegetative structures and a complex taxonomy, which includes 23 subgenera and many sections and series. To better understand Passiflora's variability and interspecific relationships, the phylogeny of 61 species, classified in 11 of 23 suggested subgenera, was investigated. Three molecular markers were used, the nuclear ribosomal internal transcribed spacers (nITS), the plastid trnL-trnF spacer regions (~1000 bp), and the rps4 plastid gene (~570 bp). Three major clades were highly supported, independent of the marker and phylogenetic method used; one included the subgenera Distephana, Dysosmia, Dysosmioides, Passiflora, and Tacsonioides, a second, the subgenera Adopogyne, Decaloba, Murucuja, and Pseudomurucuja, and a third, the subgenus Astrophysea. We call these the Passiflora, Decaloba, and Astrophysea clades, respectively. The position of subgenus Deidamioides is undefined. The monophyly of Passiflora could not be statistically corroborated, and the relationships among the major clades and of these clades with the related genera remain unresolved. Our results indicate that a reevaluation of the monophyly of Passiflora and its infrageneric classification is necessary.

Key words: ITS; Passiflora; Passifloraceae; phylogenetic analysis; rps4; trnL-trnF.

Following Escobar (1988), Passifloraceae are divided into two tribes: Paropsisae (with six genera, all Old World species in Africa and Madagascar) and Passifloraeae (with 14 genera, five of them present in the New World and nine in the Old World). Judd et al. (1999) suggested that the monophyly of Passifloraceae is supported most strongly by the presence of a corona in the flowers. The Paropsisae, which contains shrubs and trees that lack tendrils, probably represent a paraphyletic basal complex within the family. Passifloraeae, in contrast, are clearly monophyletic, as evidenced by their vine habit, axillary tendrils, and specialized flowers. The genus Passiflora, which includes the largest number of species described thus far (about 400 for the New World and 20 for Asia; Cervi, 1997), is included among the Passifloraeae. The taxonomy of Passiflora is based on several floral and vegetative structures, leading to a complex taxonomic subdivision in subgenera, sections, and series. As a matter of fact, Killip (1938) and MacDougal (1994) suggested that among angiosperms no other group presents such diversity in leaf form. Its flowers also vary widely in size and color, with the corona and perianth diversely oriented and developed, all of which may have arisen as a result of coevolutionary relationships with insect pollinators (MacDougal, 1994).

According to Killip (1938), the genus should be subdivided into 22 subgenera and the Decaloba and Astrophysea subgenera into 13 sections. Escobar (1989) described one additional subgenus. Killip's (1938) classification was entirely based on morphological characters, especially those of the floral structure. Only two other studies deal with the infrageneric relationships in Passiflora (Sánchez et al., 1999; de Melo et al., 2001), but none employed modern phylogenetic methods, DNA sequence data, or suggested any infrageneric grouping.

In the present investigation we analyzed the relationships of 61 species of Passiflora, formally classified in 11 subgenera, and representatives of four other genera, using two noncoding DNA segments, the nuclear ribosomal internal transcribed spacers (ITS), and the plastid trnL-trnF spacers. These regions have been widely used in plant phylogenetics because of their high rate of nucleotide substitutions (Taberlet et al., 1991; Baldwin, 1992; Baldwin et al., 1995; Rauscher, 2002) and their power in elucidating infrageneric relationships (Gielly and Taberlet, 1996; Bakker et al., 1998; Molvray et al., 1999; Ni-shikawa et al., 1999; Hardig et al., 2000). The rps4 gene (encoding protein 4 of the small plastid ribosomal subunit) was also studied in a smaller number of species to broadly access the major phylogenetic relationships within Passiflora. This gene was chosen mainly because of its slower evolutionary rate when compared with the other two regions studied here and its previously successful use in the phylogenetic reconstruction of Poaceae (Nadot et al., 1994) and Iridaceae (Souza-Chies et al., 1997). The data were evaluated using several phylogenetic reconstruction methods. Specific objectives were (a) to examine the nature of the variation in these two differently positioned spacer regions and in a coding region, assessing
their phylogenetic utility in *Passiflora*; (b) to investigate the monophyly of the genus; and (c) to clarify the infrageneric phylogenetic relationships.

MATERIALS AND METHODS

Plants studied and laboratory methods—The 61 species representing 11 subgenera investigated here are listed in Appendix 1 (see Supplementary Data accompanying the online version of this article), together with representatives from four other genera of Passifloraceae (*Adenia, Mitostemma, Ternastrylis, Paropsis*) utilized as outgroups. This sampling includes all species of Passifloraceae from which we could obtain suitable material to extract DNA, containing taxa from a wide distributional range in South and Central America. Among the outgroups, representatives of the two tribes of Passifloraceae are considered.

DNA was extracted from fresh leaves (collected directly from nature or derived from seeds grown in the laboratory) or from herbarium material, using the cetyltrimethyl ammonium bromide (CTAB) method (Doyle and Doyle, 1987). Amplification was done by polymerase chain reaction (PCR), using the primers described by Desfeux and Lejaune (1996) for ITS and the primers *e* and *f* of Taberlet et al. (1991) for trnL-trnF. The *rps4* gene was amplified with primers rps5 and trnS described by Souza-Chies et al. (1997). The amplified material was purified with shrimp alkaline phosphatase and exonuclease I (Amersham Biosciences, Piscataway, New Jersey, USA), and the two strands were directly sequenced, using the internal primers ITS3 and ITS3-reverse (Desfeux and Lejaune, 1996) for ITS. Sequencing was done using the BigDye Terminator Sequencing Kit (PE Applied Biosystems, Foster City, Michigan, USA) on an ABI Prism 310 (PE Applied Biosystems). Sequences were deposited with GENBANK (see Appendix 1 in the Supplementary Data accompanying the online version of this article).

Data analysis—Sequences were aligned using the ClustalX 1.81 program (Thompson et al., 1994, 2001) and manually refined. Phylogenetic analyses were performed in PAUP*, version 4b10 (Swofford, 1998). All the analyses described later were done with each spacer considered as a different data set (ITS or trnL-trnF) and also with both markers combined in a single alignment. ITS1 and ITS2 were considered together. Because of technical problems, we could not obtain usable sequences for some species for some markers, so that only 55 species were studied for ITS and 60 for trnL-trnF. For *rps4*, we sequenced material from 32 species, in order to obtain representatives of the major clades of *Passiflora*, which were compared with three of the four outgroups.

Equally weighted parsimony (maximum parsimony [MP]) analyses were performed by a heuristic search with tree bisection-reconnection (TBR) branch swapping, the MULPARS option, and 1000 random-addition replicates. Bootstrap statistical support (Felsenstein, 1985) was carried out with the MULPARS option, and 1000 random-addition replicates, with trees being sampled every 100 generations for a total of 5000 trees. Burn-in, or the time for each parameter to reach a stationary state, was determined when visual inspection indicated that the log-likelihood values achieved an asymptote over a large number of generations. To calculate the posterior probability of each bipartition, a 50% majority-rule consensus tree was constructed from the remaining trees using PAUP*.

For the distance analyses, trees were constructed using the neighbor-joining method (NJ; Saitou and Nei, 1987) using proportional (p), Kimura two parameter, and logDet (Steel, 1994; Lockhart et al., 1994) distances. LogDet or paralinear distances were calculated to test the possible influence of the nucleotide composition difference in the phylogeny (Nei and Kumar, 2000). Reliability of the trees was tested using 1000 bootstrap replicates (Hedges, 1992). Topology comparisons between the ITS and trnL-trnF data sets were performed using the KH and SH tests. Relative rate evaluations, based on the two-cluster test of Takezaki et al. (1995), were performed using the PHYLMETIST program (Kumar, 1996). Average nucleotide diversities and their standard errors within each subgenus were calculated by the SendBS program (Takezaki, 2001) with the *p* distance option and 2000 bootstrap replications.

The results of the different inference phylogenetic methods within each data set were quite similar, so only selected results are presented here. (All other trees are presented in the Supplementary Data accompanying the online version of this article.) All trees were rooted with *Paropsis* because it is representative of Paropsieae and was shown to be more basal than *Adenia* by Chase et al. (2002).

A possible substitution saturation in the ITS region was investigated by plotting the ITS pairwise sequence *p* distances against the more conserved trnL-trnF pairwise distances. The minimum sizes of the flowers (using the descriptions of Killip [1938], MacDougal [1994], and Cervi [1997]) of different clades (see Results) were compared using the Wilcoxon-Mann-Whitney test to determine if their averages were significantly different.

RESULTS

Sequence variation—The ITS alignment is 586 bp in length (individual sequences ranged from 387 to 479 bp) (ITS1 is from position 1 to 353 and ITS2 from position 354 to the final) and is highly variable with 347 parsimony-informative sites. Because of the high divergence, the ITS alignment among the sequences of the different genera is ambiguous in several regions and many indels are present. Interestingly, all species of subgenera *Passiflora*, *Distephana*, and *Paropsis* have sequences shorter than the other species, possibly from a large (about 50 bp) deletion around position 58. Comparison with other genera suggests that this deletion may be synapomorphic. The guanine-cytosine (GC) content is high in *Passiflora* (63%), but it is significantly lower in sub-
genera Decaloba, Adopogyne, Murucuja, Pseudomurucuja, and Deidamioides (53%), as compared to all the other subgenera (Passiflora, Dysosmia, Dysosmioides, Distephana, and Tacsonioides) (67%) ($\chi^2 = 34.8; 1$ df; $P < 0.0001$). The pairwise p distances, including the outgroups, ranged from 1.8% to 10%, with an average value of 4.4%. The GC content is low in this region (36%), and no marked differences were found among the subgenera. The pairwise p distances, including the outgroups, ranged from 0.2% to 8.1%, with an average value of 3.5%.

Phylogenetic analysis—The selected model for the maximum-likelihood analysis using MODELTEST was TrN+I+G ($-\ln L = 8227.1035$) for ITS, HKY + G ($-\ln L = 2131.0359$) for trnL-trnF, and TVM + G ($-\ln L = 2164.3538$) for rps4 (see Posada and Crandall [1998] for details of the models). The gamma shape parameters estimated for the three DNA regions were also different (ITS, 1.839; trnL-trnF, 0.5640; rps4, 0.7806). For the combined data of the spacer regions, the model selected was TrN+I+G ($-\ln L = 10381.6836$), and for the combined data sets, respectively.

The gamma shape parameters estimated for the three DNA regions were also different (ITS, 1.839; trnL-trnF, 0.5640; rps4, 0.7806). For the combined data of the spacer regions, the model selected was TrN+I+G ($-\ln L = 10381.6836$), and for the combined data sets, respectively.

In the great majority of the trees we can observe three major clades within *Passiflora*, which are generally supported by high bootstrap values: one composed of all studied species of subgenera Distephana, Dysosmia, Dysosmioides, Passiflora, and Tacsonioides; another comprising all species of subgenera Adopogyne, Decaloba, Murucuja, and Pseudomurucuja; and a third composed of the four species of subgenus Astrophea. We
call these the **Passiflora**, **Decaloba**, and **Astrophea** clades, respectively.

The trees obtained by the Bayesian approach and the metaPIGA program were strikingly similar among themselves and with the standard ML approach inferred by PAUP* (e.g., Fig. 2). The support values for most of the tree branches were consistently higher in the Bayesian and metapopulation genetic algorithm methods than the bootstrap values estimated in the standard ML method (Fig. 2). These results agree with the simulations performed by Wilcox et al. (2002) comparing the Bayesian posterior probabilities support values with the non-parametric bootstrap values and with the results of Lemmon and Milinkovich (2002) on the metaGA approach. They concluded that the higher support values for the Bayesian and metaGA analyses are appropriate and provide much closer estimates of phylogenetic accuracy than the estimates given by corresponding bootstrap proportions (but see Suzuki et al. [2002] for a rebuttal).

In the maximum-parsimony analyses, the heuristic search of the ITS data resulted in 72 most parsimonious trees of 1602 evolutionary steps with a consistency index (CI) of 0.5306 and a retention index (RI) of 0.7705. As for **trnL-trnF**, 196,400 trees of 265 steps were obtained, with a CI of 0.7321 and an RI of 0.8476. With the combined data set, 105 most parsimonious trees of 1855 steps were found (CI of 0.5558 and RI of 0.7672), and their consensus is shown in Fig. 4. The g1 statistic for the ITS trees is −0.992 and for the **trnL-trnF** trees is −1.319, indicating that for both regions the data are significantly skewed and therefore have a substantial phylogenetic signal (Hillis, 1991). For the combined trees, the g1 statistic is −1.058. The maximum-parsimony trees estimated using this article). The trees obtained by the NJ method with the Kimura-2 parameters and p distance were also very similar to the trees obtained with the other methods, especially when the major clades are considered (see Supplementary Data). The NJ trees obtained with the logDet distance did not show significant differences (as assessed by the KH and SH tests) from the others presented here.

There are some differences among the trees on the positioning of a few **Passiflora** species within the major clades that are worth noting. **Passiflora lacentillensis** and **P. microstipula**, from subgenus Deildanoides, form a sister group to the **Decaloba** clade in the **trnL-trnF** tree (Fig. 2) with a high divergence and therefore could possibly be considered a fourth main clade. But in the ITS tree (Fig. 1), **P. lacentillensis** is placed within the **Decaloba** clade. **Passiflora rubra** is also placed as a highly divergent sister to the remaining species of

Fig. 2. Phylogenetic tree for the intergenic spacer **trnL-trnF** in **Passiflora** and outgroups. (A) Maximum-likelihood tree. Numbers above branches are bootstrap support values (when higher than 50%) based on 1000 replicates. (B) Bayesian analysis tree. Numbers above branches are posterior probabilities values (when higher than 50%). Abbreviations indicate the subgenera (see Fig. 1 for full names). * Except **Tetrastilys ovalis**.
the Decaloba clade in the trnL-trnF trees (Fig. 2) but not in the ITS trees. Also noteworthy is the position of *P. foetida* in the ITS tree (Fig. 1), as sister to all other taxa in the Passiflora clade, a placement not seen in the trnL-trnF trees (Fig. 2).

By contrast with the high support among markers and phylogenetic methods for the major Passiflora clades, the relationships among the outgroups and clades received very low support (bootstrap and posterior probabilities values) in each tree and with many disagreements among them. For example, in the ITS maximum-likelihood tree (Fig. 1), the relationships among the clades and outgroups. Numbers above branches are bootstrap support values (when higher than 50%) based on 1000 replicates. Abbreviations indicate the subgenera (see Fig. 1 for full names).

The combined ML tree (Fig. 3) presents a topology that has components found in both single marker trees, with *T. ovalis* positioned as sister of the Passiflora clade (bootstrap support = 100%), *Adenia keramanthus* positioned among the three clades, and *Mitostemma brevifilis* appearing as the most basal species, but both with support values below 50%.

All trees of the rps4 data set, despite its much smaller size, corroborate the existence of three major *Passiflora* clades, but there is disagreement on the relationship among the clades and their relationship with the outgroups when comparing the different methods. For example, in the ML tree the higher-order relationships are statistically unresolved (Fig. 5), but in the NJ and Bayesian analyses (see Supplementary Data) there is moderate support for the non-monophyly of *Passiflora*. Therefore, the monophyly of the genus *Passiflora* was not statistically supported by any data set or phylogenetic method, and in several trees there was even statistical support for a non-monophyletic *Passiflora*.

The ITS high sequence variability and pairwise distances (see earlier) suggest substitution saturation at higher levels of differentiation. Indeed, this saturation in the ITS region is evident in Fig. 6, in which we plotted the ITS pairwise sequence...
Fig. 4. Strict consensus of the 105 most parsimonious trees for the ITS + trnL-trnF data set in Passiflora and outgroups. Numbers above branches are bootstrap support values (when higher than 50%) based on 1000 replicates. Abbreviations indicate the subgenera (see Fig. 1 for full names).

p distances with the much more conserved trnL-trnF pairwise distances. These graphics suggests that the ITS distances become saturated above a p distance of about 0.4, and this saturation implies a low reliability for the highest topological levels of the ITS phylogenetic trees.

The degree of compatibility between the trees obtained with ITS and trnL-trnF was different depending on which methods were considered. Despite the general similarity of the trees, mainly at the lower taxonomical levels, Templeton's test and the IDL test detected significant differences among the spacer-region data sets in the parsimony trees. This pattern was similar to those found by Yoder et al. (2001) and Reeves et al. (2001) in other organisms. At present, it is not clear whether heterogeneous sets of data should or should not be combined to obtain an overall phylogenetic picture. On the other hand, for ML and NJ trees, the KH and SH tests did not show significant differences between the spacers.

One interesting difference that can be observed visually is the higher divergence among the species of the Decaloba clade (implied by the usually longer branch lengths) as compared to those of the Passiflora clade, especially marked for the trnL-trnF region (Fig. 2). Also noteworthy is the usually longer branch leading to the Decaloba clade, as contrasted to that leading to the Passiflora clade. Nucleotide diversity (π) for the ITS region is significantly higher in the Decaloba clade (0.102 ± 0.013) as compared to the Passiflora clade (0.043 ± 0.078). The relative rate Z statistic ($Z = 3.549$) calculated with the PHYLYT package rejects rate constancy ($P < 0.05$) between the two. A similar result was found for the trnL-trnF intergenic region ($Z = 2.399, P < 0.05$) and for the rps4 gene ($Z = 2.976, P < 0.05$), suggesting that these different evolutionary rates are not locus specific but characteristic of the clades. To test if these differences were not due to the different number of species sampled in them, new analyses were performed consisting of 10 random subsamples of species with an identical number of species in both clades. The results corroborated the significant differences between the two clades. Because of its much smaller sample size, we did not test the Astropheia clade for these divergence differences.

Anyone acquainted with Passiflora could intuitively perceive that the different subgenera could also have dissimilar flower sizes. Indeed, a Wilcoxon-Mann-Whitney test showed
that the flowers of the Passiflora clade have a significantly larger ($P < 0.001$) minimum size than the flowers of the Decaloba and Astrophea clades (median values: 19 mm vs. 6.5 mm, respectively).

DISCUSSION

Taxonomic implications—No data set or method generates a phylogenetic tree that is consistent with Passiflora's monophyly. However, there is much inter-tree variability in the relationships between the outgroups and the Passiflora clades, and most of the groupings received low branch support. Considering these results, additional data would be necessary to test the monophyly of the genus Passiflora and its relationships with the other genera of the family.

By contrast, all phylogenetic results presented here suggest the existence of three well-defined clades in Passiflora. The largest comprise all representatives of Killip's (1938) subgenera Distephana, Dysosmia, Dysosmioides, Passiflora, and Tacsonioides. Because the subgenus Passiflora is by far the most diverse of all, we named this set as the Passiflora clade. A second major clade comprises all species of Killip's (1938) subgenus Decaloba, as well as subgenus Muruncia, P. cuprea of subgenus Pseudomuruncia, and P. multiflora of subgenus Adopogyne. Using the same reasoning stated above, we called this the Decaloba clade. The third clade proposed here comprises the four species of the subgenus Astrophea (P. haematostigma, P. mansoi, P. citrifolia, and P. macrophylla), which has very high support values in most of the trees presented here.

The subgenus Deidamioides (represented here by P. lancetillensis and P. microstipula) presents ambiguous positions in the trees derived from the different markers. In the more conserved trnL-trnF spacer and rps4 gene, this subgenus is very divergent from the other subgenera, and it was placed in some trnL-trnF trees (e.g., the MP tree available in the supplementary data) as a very basal independent clade, suggesting that it could be considered as a fourth major clade of Passiflora. However, in the ITS trees (e.g., Fig. 1), P. lancetillensis is placed within the Decaloba clade, with a high bootstrap value. These ambiguities, and the low number of species sampled, determine that the status of this subgenus should remain undefined until further data are analyzed.

Though we could not find any published evidence that explicitly corroborates the existence of these three clades in Passiflora, two papers seem to agree with our results. De Melo et
Perhaps the clearest example of the utility of a limited taxonomic sampling is the most recent work that tries to infer ordinal and familial classification for angiosperms (such as that of the Angiosperm Phylogeny Group, 1998) with a relatively limited sample of the angiosperm species. Rosenberg and Kumar (2001) also suggested that incomplete sampling might not be a problem for phylogenetic inferences (but see Zwickl and Hillis [2002] for a different position). Our results with 11 (49%) of the 23 putative subgenera suggest that at least the subgenera studied here should be grouped in three major clades: *Passiflora*, *Decaloba*, and *Astrophoea*.

Sequence variation—The GC content in the ITS region varied from 47% to 61% in the different species of *Passiflora*, a variability that has also been observed in other groups of plants (e.g., Nishikawa et al., 1999; Gaut et al., 2000). Interestingly, the GC content differs significantly between the *Decaloba* and non-*Decaloba* clades, and although this may be a bias factor for most phylogenetic methods, the use of the logDet distance (Lockhart et al., 1994; Steel, 1994) should correct for it. The use of this distance with a subsample of our data yielded the same main clades presented here, suggesting that the ITS phylogeny was not biased by the heterogeneity in nucleotide content (see Supplementary Data).

Heterogeneity in the rates of DNA change such as that observed in the *Decalobanon-Decaloba* clades has also been documented at several taxonomic levels in plants (Bousquet et al., 1992; Gaut et al., 1993; Suh et al., 1993; Gielly and Taberlet, 1996; Eyre-Walker and Gaut, 1997; Ainouche and Bayer, 1999; Bortiri et al., 2002). Many factors supposedly influence the rate of molecular evolution, such as generation time, selection, DNA replication or repair, and metabolic rates (Wu and Li, 1985; Britten, 1986; Bousquet et al., 1992; Li, 1993; Martin and Palumbi, 1993; Eyre-Walker and Gaut, 1997; Gaut et al., 1997). Unfortunately, little is known about...

Fig. 6. Scatterplot of the relationship between ITS and trnL-trnF pairwise sequence distances (p distances) among all pairs of sequences in *Passiflora* and outgroups. The ITS distances became saturated above a p distance of about 0.4.
such factors in *Passiflora*, although Benson at al. (1975) asserted that members of the subgenus *Decaloba* have shorter generation times than species of the subgenus *Passiflora*, a factor that may have accelerated its evolutionary rate. Another possible explanation for the very short branches within the *Passiflora* clade is a rapid radiation of the species of this clade, an explanatory factor that was attributed to similar results described in other groups of angiosperms (e.g., Bortiri et al., 2002).

Comparison among markers—The discrepancies between the trees obtained with ITS and trnL-trnF are mainly due to the position of a few species (e.g., *P. rubra* and *P. foetida*) and the outgroup relationships. Some of these discrepancies could be due to the different forms of inheritance of nuclear and chloroplast markers. The majority of the angiosperms have maternal chloroplast inheritance, but *Turnera ulmifolia*, a closely related member of the Malpighiales, has mixed, paternally biased inheritance (Shore and Triassi, 1998). (Note that Chase et al. [2002] placed the Turneraeae within the Passifloraceae.) Courrieu and Coleman (1988) found chloroplast paternal inheritance in *P. edulis*; and similar results were obtained by A. P. Lorenz et al. (Federal University of Rio Grande do Sul, unpublished data) in *P. elegans* and *P. actinia*. In accordance with this reasoning, the trees based on the two chloroplast markers, *trnL-trnF* and *rps4*, generally had fewer discrepancies among themselves than when they were compared with trees based on ITS sequences.

Another factor that may have contributed to these discrepancies, mainly at the higher level relationships, is the observed saturation in the ITS region, when contrasted to the *trnL-trnF* data (Fig. 5). The phylogenetic utility of the ITS spacers within the Passifloraceae seems to be restricted to the interspecific comparisons, and they should be used with caution at the intrageneric level.

Future considerations—We recommend, and it is in our plans, that future work should concentrate on certain critical areas, such as increased taxon sampling, mainly of the subgenera not yet studied and of the larger subgenera, such as *Decaloba*, that were underrepresented here. Furthermore, considering the lack of adequate resolution found in our trees at the higher order relationships, it is necessary to increase the amount of sequence data to clarify issues such as the monophyly of *Passiflora* and its relationship with its major clades and with the other genera of the Passifloraceae. Also of interest is an understanding of the causes underlying the different evolutionary dynamics found here among the major *Passiflora* clades.

LITERATURE CITED

